

Dipl.-Ing. Herwarth Reich GmbH

Designed to Customer

マルチクロスフォルテ 卓越したねじれ特性を持つ 高フレキシブルカップリング

目次

	ページ
製品の概要	3
テクニカルデータ	4
カップリングサイズ選定方法	4
サービスファクター	5
サイズ・寸法表	5
ラバーエレメント取り付け部寸法	6
カップリング材料	6
オプションのカップリングデザイン	6
カップリング取り付け方法、アラインメント、公差	7
ラバーエレメントの組み付け	
技術情報に関する注記	7
安全使用に関する諸注意	7

D2D - デザインド トゥ カスタマー

D₂C

D2C(デザインドトゥカスタマー)はREICH社のコンセプトであり、多くの実績を上げてきました。 お客様の様々なご要求に対して長年蓄積したカップリングの技術とノウハウを駆使したテイラーメイ ド製品を提案いたします。

複数のモジュラーコンポーネントの組み合わせにより、お客様のアプリケーションにマッチするソリューションを設計します。技術相談、設計、計算、製造、既存設備への統合を含め、我々の製造パートナーと密なコミュニケーションにより、最適なソリューションを生み出します。お客様への個別のプロダクションとREICHのワールドワイドな販売網と流通により、より良いアフターサービスを提供いたします。

REICH の提供するお客様のニーズに応じたカスタマイズ商品は量産品、スポット品、いずれも対応いたします。 お客様のご満足を第一に、品質、納期、を含め努力邁進していきます。

REICHカップリングはカップリングのみならず、D2C(デザインドトゥカスタマー)をモットーにお客様に最適なソリューション提供を行います。

Edition April 2018

Proprietary notice pursuant to ISO 16016 to be observed:

The present MULTI MONT edition renders parts of the previous MULTI MONT catalogues obsolete. All dimensions in millimeters.

We reserve the right to change dimensions and/or design details without prior notice.

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without explicit authorization is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

© REICH-KUPPLUNGEN

製品の概要

マルチクロスフォルテは卓越したねじりばね特性を持つ高フレキシブルカップリングです。マルチクロスフォルテの特徴は、デザインは同一でも複数のバリエーションを持つラバーエレメントをカップリングサイズごとにラインナップしていることです。

マルチクロスフォルテのトルクレンジは160Nm~54000Nmですが、この広範なカップリングサイズのレンジを3種類のラバーエレメントの組み合わせでカバーしています。この結果、コスト、スペアパーツストックを減少することができます。

ラバーエレメントに接続用ボルトを統合した設計により、最大サイズのマルチクロスフォルテカップリングでもシンプルで簡単な取り付け、取り外しを実現しました。ラバーエレメントに接続用ボルトを統合した設計はラバーエレメントとカップリングハブとの接続のみならず、ラバーエレメントと外部マシンパーツとの接続も可能にしました。

マルチクロスフォルテカップリングの特徴とアドバンテージ

- ・ 高いねじり方向へのフレキシビリティーと卓越したねじりばね特性
- アキシャル、ラジアル、角度方向への高い許容ミスアラインメント値
- ・ 正逆回転のいずれもバックラッシュフリーのトルク伝達
- ・ 振動吸収を熱に変換する高いダンピング特性
- ・ 高いねじり振動とショック負荷の吸収特性
- ・ カップリングのアラインメント調整が容易
- ・ 機械から取り外すことなくラバーエレメントのカップリングハブへの接続、交換が可能
- ・ 一つのカップリングサイズシリーズには、1種のラバーエレメントしか使用しないので、コスト削減につながる。

テクニカルデータ

			定格 トルク	最大 トルク	変動 トルク	į	動的ねじり	ばね定数		Static angular	rel. Dämp-	定格トルク での 静的偏角許容	アキシャル ミスアラ インメント	・ラジアル ミスアラ インメント
			T _{KN}	T _{Kmax}	T _{KW (10 Hz)} 1)	C _{T dyn} [Nm/rad]				deflection at	fung	最高回転数		
			Nm	Nm	Nm	0.25 T _{KN}	0.5 T _{KN}	0.75 T _{KN}	1.0 T _{KN}	T _{KN}	Ψ	min-1		
	MCF	53	160	480	53	290	500	650	1100	40°	1.2	4500		
5.5	MCF	54	250	750	83	380	670	875	1500	40°	1.2	4500		3
eries	MCF	55	500	1500	165	720	1270	1650	2800	30°	1.2	3800		
Type series	MCF	56	630	1890	210	900	1600	2100	3600	28°	1.2	3700	±4	
	MCF	58	1100	3300	365	1650	2900	3750	6400	22°	1.2	3000		
	MCF	510	1600	4800	500	2360	4160	5410	9300	20°	1.2	2800		
	MCF	65	2500	7500	900	6600	9000	11500	13700	35°	1.2	2300		
es 6	MCF	66	4000	12000	1400	11000	14500	18400	22000	27°	1.2	1900		
Type series	MCF	68	6300	18900	2200	17000	23400	29700	35500	22°	1.2	1700	±8	5
Lype	MCF	69	7600	22800	2600	20100	27600	35000	42000	21°	1.2	1600		
	MCF	610	10000	30000	3400	26800	36700	46600	55700	18°	1.2	1500		
2.5	MCF	75	14000	42000	4700	35000	58000	75700	119000	24°	1.2	1350		
eries	MCF	76	20000	60000	7000	50000	83000	108000	170000	21°	1.2	1200	10	10
Type series	MCF	78	35000	105000	12000	86700	144000	187000	294000	16°	1.2	1000	±12	10
=	MCF	710	54000	162000	18000	134000	223000	290000	457000	13°	1.2	900		

¹⁾ 連続運転時の周波数10Hzでのカップリング許容変動トルク 周波数が異なる場合には、次の公式に周波数(fx)を入力し、変動トルクTĸwを求めてください。

$$T_{KW} \cdot \sqrt{\frac{10}{f_v}}$$

カップリングサイズ選定方法

いかなる運転条件下においても、負荷がカップリング許容値を超えないように選定を行ってください。 駆動源より周期的なトルク変動が発生しない場合、カップリングサイズは下記のとおりサービスファクターを考慮 して選定します。

駆動源より周期的なトルク変動が発生する場合(エンジン負荷など)、カップリング選定はねじり振動計算結果を確認のうえ行います。詳細はREICH社代理店にお問い合わせください。

1. 駆動源のトルクTANは、右記の公式より求めます。

$$T_{AN} [Nm] = 9550 \frac{P[kW]}{n[rpm]}$$

2. カップリング許容定格トルクTKNは少なくとも駆動源のトルク TAN以上にとるべきです。 また、次ページ記載のサービスファクターを乗じます。

$$T_{KN} \ge T_{AN} \cdot S_m \cdot S_t \cdot S_z$$

3. カップリング許容最大トルクTKmaxは駆動源の最大トルクTmax以上にとるべきです。 また、次ページ記載のサービスファクターを乗じます。

$$T_{Kmax} \ge T_{max} \cdot S_z \cdot S_t$$

4. 周波数10Hzでのカップリングの許容変動トルクTKWは、最大変動トルクTw以上にとるべきです。

$$T_{KW(10Hz)} \ge T_W \cdot S_t \cdot S_f$$

また、右記のサービスファクターを乗じます。 周波数が10Hz以外の場合には、右記の公式に周波数(fx)を入力し、変動トルクTkwを求めてください。

$$S_f = \sqrt{\frac{f_X}{10}}$$

サービスファクター

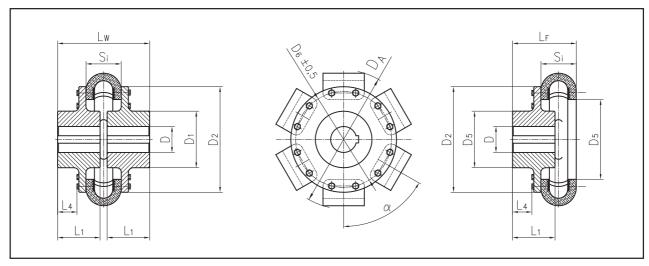
負荷ファクター S_m

駆動源	被駆動源の負荷ファクター										
	G	М	S	E							
電気モーター タービン 油圧モーター	1.25	1.6	2.0	2.8							
4サイクル以上の エンジン 速度変動率≥1:100	1.5	2.0	2.5	3.5							

温度ファクターSt

環境温度	-40 °C +30 °C	+40 °C	+60 °C	+80 °C	> +80 °C	
St	1.0	1.1	1.4	1.8	upon request	

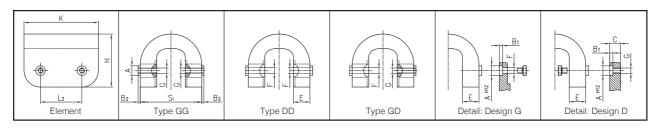
始動ファクター S_z


一時間あたり の始動回数	30	60	120	240	> 240
S _z	1.0	1.1	1.2	1.3	upon request

G = 通常負荷 M = 中程度負荷 S = 高負荷 E = 超高負荷

マルチクロスフォルテカップリングサイズ、寸法表

シャフトカップリング MCF...W


フランジカップリング MCF...F

Coup	_	D _A	[)	D ₁	D ₂	D ₅	D ₆	α°	L ₁	L ₄	Lw	L _F	Si	MCFW 重量 ¹⁾	MCFW J ¹⁾ total	MCFF 重量 ¹⁾	MCFF J ¹⁾ total
			min.	max.											kg	kgm²	kg	kgm ²
MCF	53	190		50	80	120	62	100	120	50	21	155	115	75	4.1	0.0085	2.5	0.0055
MCF	54	190		50	80	120	62	100	90	50	21	155	115	75	4.4	0.009	2.8	0.0064
MCF	55	230	_ p	65	105	163	108	143	72	72	23	159	117	75	9.9	0.032	5.7	0.021
MCF	56	238	ored oter	70	1120	172	114	150	60	80	31	175	125	75	11.8	0.043	6.8	0.028
MCF	58	290	— ⋾ e l	75	120	224	168	203	45	90	41	195	135	75	17.8	0.101	10.1	0.065
MCF	510	320		80	130	254	200	234	36	100	53	219	147	75	24.2	0.17	13.6	0.108
MCF	65	390		90	144	270	164	240	72	110	38	246	181	116	35.5	0.31	21.5	0.21
MCF	66	462		100	160	352	249	322	60	122	50	270	193	116	53.8	0.76	31.4	0.50
MCF	68	540	60	120	192	420	319	390	45	145	72	316	216	116	85.6	1.63	48.8	1.05
MCF	69	558	60	120	192	442	340	410	40	165	85	356	236	116	97.3	2.01	55.4	1.30
MCF	610	368	75	140	224	520	422	490	36	165	93	356	236	116	130.4	3.67	72.7	2.32
MCF	75	675	85	155	248	454	280	404	72	180	55	386	293	200	169.6	4.28	107	3.11
MCF	76	750	100	175	280	530	358	480	60	195	70	416	308	200	228	7.58	141	5.45
MCF	78	892	110	190	304	675	507	625	45	222	97	470	335	200	332	17.42	202	12.42
MCF	710	1040	120	215	344	825	660	775	36	245	120	516	358	200	479	35.83	285	24.97

¹⁾ 最大穴径時の数値

ラバーエレメント取り付け部寸法

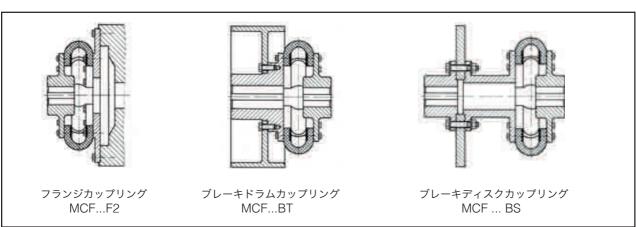
Type series	А	B ₁	B ₂	C min.	Е	F	G	Н	K	L2	M _A [Nm]	Connection Design G	bolt for C min. Design D
5	11	5 + 0.5	3	17	18	6.6	M 6	56	69	39 ± 0.2	10	M 6 x 30	M 6 x 30 DIN 933
6	18	6 + 0.5	4	24	31	11	M 10	97	140	78 ± 0.2	49	M 10 x 35	M 10 x 55 DIN 933
7	33	7 + 0.5	5	33	57	22	M 20	173	230	126 ± 0.2	410	M 20 x 60	M 20 x 90 DIN 933

MA:ボルト締め付けトルク値

ラバーエレメントの接続方法 - カップリングデザインに応じて、ラバーエレメントには下記の3種のバリエーションが ございます。

> GGタイプ:両側ともにメネジ(シャフトカプリング向け) GDタイプ: 貫通穴とメネジ(フランジカップリング向け)

DDタイプ:両側ともに貫通穴(ダブルフランジカップリング向け)


マルチクロスフォルテカップリング標準品の材料、材質

カップリングハブ サイズ53~66 ねずみ鋳鉄GG25

サイズ68~710 鋼鉄(降伏強度360Mpa以上)

ラバーエレメント 天然/合成ゴム混合品NR-SBR、ショアA硬度 $60\sim65$ 度、強化コード内蔵 許容環境温度 80° Cまで

オプションのカップリングデザイン例

マルチクロスフォルテカップリング取り付け方法 アラインメント、公差

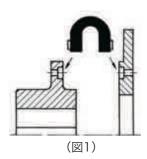
カップリングがその機能を適切に発揮するために、カップリングの組み立ては下記の手順に応じて行ってください。

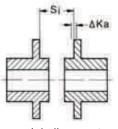
ハブ、フランジの取り付け穴とラバーエレメントの取り付け穴位置を正しく合わせてください。(図1)

マルチクロスフォルテカップリングは、他のREICHカップリングと比較して、より大きなミスアラインメントを許容しますが、運転時のミスアラインメント許容量を大きくするために、設置時のアラインメント調整は正確に行ってください。

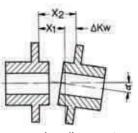
カップリングの組み立て終了後、適正な計測治具(ストレートエッジ、ノギス、デプスゲージ、ダイアルゲージなど)を使用して下記の表に記載された公差を参考にして、アラインメント計測調整を、可能であれば、90度ごとにラジアル方向から4箇所で行ってください。

MCF size	53	54	55	56	58	510	65	66	68	69	610	75	76	78	710		
Si ± ΔKa	[mm]			75	± 2			116 ± 3					200 ± 5				
ΔKr	[mm]			0.	.6			1.0					1.5				
ΔKw	[mm]	1.5							2.0					3.0			
α	[°]	0.75	0.6	0.5	0.5	0.4	0.35	0.5	0.4	0.3	0.3	0.25	0.4	0.35	0.3	0.25	

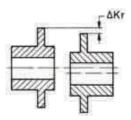

運転時に調整アライメント値が変動する場合には、その分を考慮して、あらかじめオフセット調整のうえ、カップリングの組み付けを行ってください。ただし、瞬間的に超えてしまう分には問題ありません。


特にマシンユニットがフレキシブルな固定法の場合ではアライメント調整を考慮してく ださい。

固定トルクなどにより、シャフト間にはスラストが発生します。本来シャフトサポートベアリングで保持すべきですが、カップリングにスラストが付加されることもあります。組み付けに疑問点などございましたら、REICH社へお問い合わせください。


ラバーエレメントの組み付け

ラバーエレメントはカップリング組み立て時にカップリングハブのアラインメントに追従します。ラバーエレメントが外側より押さえつけられて変形しながら、ハブフランジのカウンターボアにラバーエレメントのガイドジャケットが挿入され適正なポジションに収納されます。その後、ボルトを規定の締め付けトルクで締結を行ってください。

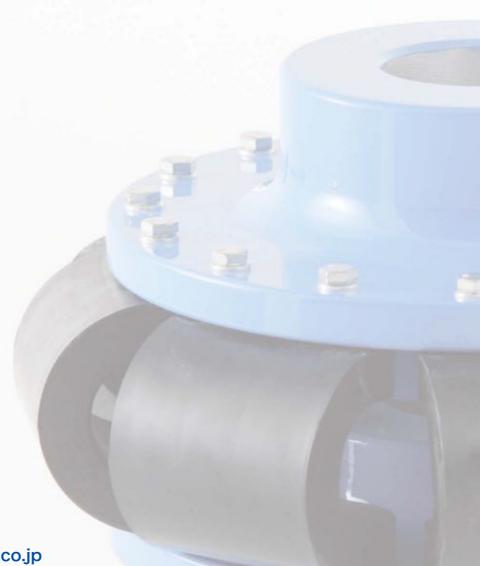


axial alignment

angular alignment

radial alignment

技術情報に関する注記


カタログ中の技術情報は、カップリング本体とそのラバーエレメントのみに適用するものです。カップリングとその周辺のコンポーネンツに許容値以上の負荷がかからないよう、ユーザー様の責任のもとに管理してください。特に、ボルト締結部などの接続部分は、伝達されるトルクを勘案して十分な管理を行ってください。同様に、シャフト寸法管理、キー、シュリンクフィット、クランピングパーツなどのコネクションパーツは、カップリング本体パーツではありませんが、カップリングが本来の機能を発揮するために重要なパーツですので、ユーザー様の責任のもとに、十分な管理を行ってください。

REICH社はどのようなドライブコネクションにも最適なカップリングソリューションを提供いたします。数量の大小に関わらず、例えばプロトタイプのソリューションやカスタマイズ製品に関しても、適切なソリューションを提供いたします。また、ねじり振動計算などのカップリング選定データ提供も行います。

安全使用に関する諸注意

運転中の機械から身を守るために十分な監視を行うことや、国内、海外を問わず、決められた安全に関する法律 やルールを遵守することは、顧客、ユーザーの義務です。

試運転後適切な状態でのカップリング締結を得るために、すべてのボルト締結を再確認してください。

竹田商事株式会社 TAKEDA TRADE CO., LTD.

大阪本社

〒530-6106 大阪市北区中之島3-3-23

TEL: 06-6441-1503 FAX: 06-6441-1916

東京営業所

〒110-0005 東京都台東区上野5-6-10

TEL: 03-6806-0757 FAX: 03-6806-0764

名古屋営業所

〒460-0008 名古屋市中区栄1-22-16

TEL: 052-203-1103 FAX: 052-203-1104

http://www.takeda-trade.co.jp